3.423 \(\int \frac{\tan ^{\frac{3}{2}}(c+d x) (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx\)

Optimal. Leaf size=237 \[ \frac{2 a^{3/2} B \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{b} d \left (a^2+b^2\right )}+\frac{B (a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{B (a-b) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{B (a+b) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}-\frac{B (a+b) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )} \]

[Out]

((a - b)*B*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a - b)*B*ArcTan[1 + Sqrt[2]*Sqr
t[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*a^(3/2)*B*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(Sqrt[b
]*(a^2 + b^2)*d) + ((a + b)*B*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) -
((a + b)*B*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.303643, antiderivative size = 237, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {21, 3573, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ \frac{2 a^{3/2} B \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{b} d \left (a^2+b^2\right )}+\frac{B (a-b) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{B (a-b) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{B (a+b) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}-\frac{B (a+b) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]^(3/2)*(a*B + b*B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^2,x]

[Out]

((a - b)*B*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a - b)*B*ArcTan[1 + Sqrt[2]*Sqr
t[Tan[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*a^(3/2)*B*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/(Sqrt[b
]*(a^2 + b^2)*d) + ((a + b)*B*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) -
((a + b)*B*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3573

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1
/(c^2 + d^2), Int[Simp[a^2*c - b^2*c + 2*a*b*d + (2*a*b*c - a^2*d + b^2*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e +
 f*x]], x], x] + Dist[(b*c - a*d)^2/(c^2 + d^2), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan
[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2
, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^{\frac{3}{2}}(c+d x) (a B+b B \tan (c+d x))}{(a+b \tan (c+d x))^2} \, dx &=B \int \frac{\tan ^{\frac{3}{2}}(c+d x)}{a+b \tan (c+d x)} \, dx\\ &=\frac{B \int \frac{-a+b \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx}{a^2+b^2}+\frac{\left (a^2 B\right ) \int \frac{1+\tan ^2(c+d x)}{\sqrt{\tan (c+d x)} (a+b \tan (c+d x))} \, dx}{a^2+b^2}\\ &=\frac{(2 B) \operatorname{Subst}\left (\int \frac{-a+b x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac{\left (a^2 B\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} (a+b x)} \, dx,x,\tan (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=\frac{\left (2 a^2 B\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac{((a-b) B) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac{((a+b) B) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=\frac{2 a^{3/2} B \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{b} \left (a^2+b^2\right ) d}-\frac{((a-b) B) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac{((a-b) B) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac{((a+b) B) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{((a+b) B) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}\\ &=\frac{2 a^{3/2} B \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{b} \left (a^2+b^2\right ) d}+\frac{(a+b) B \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a+b) B \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{((a-b) B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{((a-b) B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}\\ &=\frac{(a-b) B \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a-b) B \tan ^{-1}\left (1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{2 a^{3/2} B \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{b} \left (a^2+b^2\right ) d}+\frac{(a+b) B \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a+b) B \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}\\ \end{align*}

Mathematica [C]  time = 0.254611, size = 228, normalized size = 0.96 \[ \frac{B \left (8 b^{3/2} \tan ^{\frac{3}{2}}(c+d x) \text{Hypergeometric2F1}\left (\frac{3}{4},1,\frac{7}{4},-\tan ^2(c+d x)\right )+3 a \left (8 \sqrt{a} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )+2 \sqrt{2} \sqrt{b} \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )-2 \sqrt{2} \sqrt{b} \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )+\sqrt{2} \sqrt{b} \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-\sqrt{2} \sqrt{b} \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )\right )}{12 \sqrt{b} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]^(3/2)*(a*B + b*B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^2,x]

[Out]

(B*(3*a*(2*Sqrt[2]*Sqrt[b]*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - 2*Sqrt[2]*Sqrt[b]*ArcTan[1 + Sqrt[2]*Sqrt[
Tan[c + d*x]]] + 8*Sqrt[a]*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]] + Sqrt[2]*Sqrt[b]*Log[1 - Sqrt[2]*Sqrt
[Tan[c + d*x]] + Tan[c + d*x]] - Sqrt[2]*Sqrt[b]*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]) + 8*b^(3/
2)*Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*Tan[c + d*x]^(3/2)))/(12*Sqrt[b]*(a^2 + b^2)*d)

________________________________________________________________________________________

Maple [A]  time = 0.041, size = 305, normalized size = 1.3 \begin{align*} 2\,{\frac{{a}^{2}B}{d \left ({a}^{2}+{b}^{2} \right ) \sqrt{ab}}\arctan \left ({\frac{\sqrt{\tan \left ( dx+c \right ) }b}{\sqrt{ab}}} \right ) }-{\frac{B\sqrt{2}a}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{B\sqrt{2}a}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }-{\frac{B\sqrt{2}a}{4\,d \left ({a}^{2}+{b}^{2} \right ) }\ln \left ({ \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }+{\frac{B\sqrt{2}b}{4\,d \left ({a}^{2}+{b}^{2} \right ) }\ln \left ({ \left ( 1-\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) }+\tan \left ( dx+c \right ) \right ) ^{-1}} \right ) }+{\frac{B\sqrt{2}b}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( 1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) }+{\frac{B\sqrt{2}b}{2\,d \left ({a}^{2}+{b}^{2} \right ) }\arctan \left ( -1+\sqrt{2}\sqrt{\tan \left ( dx+c \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x)

[Out]

2/d*a^2/(a^2+b^2)/(a*b)^(1/2)*arctan(tan(d*x+c)^(1/2)*b/(a*b)^(1/2))*B-1/2/d/(a^2+b^2)*B*2^(1/2)*arctan(1+2^(1
/2)*tan(d*x+c)^(1/2))*a-1/2/d/(a^2+b^2)*B*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*a-1/4/d/(a^2+b^2)*B*2^(1
/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*a+1/4/d/(a^2+b^2)*B*2^
(1/2)*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*b+1/2/d/(a^2+b^2)*B*
2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*b+1/2/d/(a^2+b^2)*B*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*b

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 84.2287, size = 17946, normalized size = 75.72 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/4*(4*sqrt(2)*(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^5*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b +
2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*(B^4/((a^
4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^
2*b^6 + b^8)*d^4))*arctan(((B^6*a^8 + 2*B^6*a^6*b^2 - 2*B^6*a^2*b^6 - B^6*b^8)*d^4*sqrt(B^4/((a^4 + 2*a^2*b^2
+ b^4)*d^4))*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) +
 sqrt(2)*((a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*d^7*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((
B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + (B^2*a^6*b + 3*B^2
*a^4*b^3 + 3*B^2*a^2*b^5 + B^2*b^7)*d^5*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4
 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^
4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(((B^4*a^6 - B^4*a^4*b^2 - B^4*a^2*
b^4 + B^4*b^6)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((B^3*a^6*b - B^3*a^4*b^3 -
B^3*a^2*b^5 + B^3*b^7)*d^3*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (B^5*a^5 - 2*B^5*a^3*b^2 + B
^5*a*b^4)*d*cos(d*x + c))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4
/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(B^4/((a
^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (B^6*a^4 - 2*B^6*a^2*b^2 + B^6*b^4)*sin(d*x + c))/cos(d*x + c))*(B^4/((a^4
 + 2*a^2*b^2 + b^4)*d^4))^(3/4) + sqrt(2)*((B^3*a^11 + 3*B^3*a^9*b^2 + 2*B^3*a^7*b^4 - 2*B^3*a^5*b^6 - 3*B^3*a
^3*b^8 - B^3*a*b^10)*d^7*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^
8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + (B^5*a^8*b + 2*B^5*a^6*b^3 - 2*B^5*a^2*b^7 - B^5*b^9)*d^5
*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((B^2*a^
4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*
a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4))/(B^
10*a^4 - 2*B^10*a^2*b^2 + B^10*b^4)) + 4*sqrt(2)*(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^5*sqrt((B^2*a^4 + 2*B^2
*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B
^2*a^2*b^2 + B^2*b^4))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^
8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*arctan(-((B^6*a^8 + 2*B^6*a^6*b^2 - 2*B^6*a^2*b^6 - B^6*b^8
)*d^4*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a
^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) - sqrt(2)*((a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*d^7*sqrt(B^4/((a^
4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6
+ b^8)*d^4)) + (B^2*a^6*b + 3*B^2*a^4*b^3 + 3*B^2*a^2*b^5 + B^2*b^7)*d^5*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b
^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b
 + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt((
(B^4*a^6 - B^4*a^4*b^2 - B^4*a^2*b^4 + B^4*b^6)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqr
t(2)*((B^3*a^6*b - B^3*a^4*b^3 - B^3*a^2*b^5 + B^3*b^7)*d^3*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x +
c) + (B^5*a^5 - 2*B^5*a^3*b^2 + B^5*a*b^4)*d*cos(d*x + c))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b
+ 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(si
n(d*x + c)/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (B^6*a^4 - 2*B^6*a^2*b^2 + B^6*b^4)*sin(d
*x + c))/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) - sqrt(2)*((B^3*a^11 + 3*B^3*a^9*b^2 + 2*B^3*
a^7*b^4 - 2*B^3*a^5*b^6 - 3*B^3*a^3*b^8 - B^3*a*b^10)*d^7*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((B^4*a^
4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + (B^5*a^8*b + 2*B^5*a^6*b
^3 - 2*B^5*a^2*b^7 - B^5*b^9)*d^5*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a
^2*b^6 + b^8)*d^4)))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^
4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(B^4/((a^4 +
2*a^2*b^2 + b^4)*d^4))^(3/4))/(B^10*a^4 - 2*B^10*a^2*b^2 + B^10*b^4)) - 2*B^5*a*sqrt(-a/b)*log(-(6*a*b*cos(d*x
 + c)*sin(d*x + c) - (a^2 - b^2)*cos(d*x + c)^2 - b^2 + 4*(a*b*cos(d*x + c)^2 - b^2*cos(d*x + c)*sin(d*x + c))
*sqrt(-a/b)*sqrt(sin(d*x + c)/cos(d*x + c)))/(2*a*b*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b
^2)) + sqrt(2)*(2*(B^2*a^3*b + B^2*a*b^3)*d^3*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (B^4*a^2 + B^4*b^2)*d)
*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)
*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((B^4*a^6 - B^4*a^4
*b^2 - B^4*a^2*b^4 + B^4*b^6)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((B^3*a^6*b -
 B^3*a^4*b^3 - B^3*a^2*b^5 + B^3*b^7)*d^3*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (B^5*a^5 - 2*
B^5*a^3*b^2 + B^5*a*b^4)*d*cos(d*x + c))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^
5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x + c)/cos(d*x
 + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (B^6*a^4 - 2*B^6*a^2*b^2 + B^6*b^4)*sin(d*x + c))/cos(d*x +
 c)) - sqrt(2)*(2*(B^2*a^3*b + B^2*a*b^3)*d^3*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (B^4*a^2 + B^4*b^2)*d)
*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)
*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((B^4*a^6 - B^4*a^4
*b^2 - B^4*a^2*b^4 + B^4*b^6)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((B^3*a^6*b -
 B^3*a^4*b^3 - B^3*a^2*b^5 + B^3*b^7)*d^3*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (B^5*a^5 - 2*
B^5*a^3*b^2 + B^5*a*b^4)*d*cos(d*x + c))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^
5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x + c)/cos(d*x
 + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (B^6*a^4 - 2*B^6*a^2*b^2 + B^6*b^4)*sin(d*x + c))/cos(d*x +
 c)))/((B^4*a^2 + B^4*b^2)*d), -1/4*(4*sqrt(2)*(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^5*sqrt((B^2*a^4 + 2*B^2*a
^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2
*a^2*b^2 + B^2*b^4))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8
+ 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*arctan(((B^6*a^8 + 2*B^6*a^6*b^2 - 2*B^6*a^2*b^6 - B^6*b^8)*d
^4*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*
b^4 + 4*a^2*b^6 + b^8)*d^4)) + sqrt(2)*((a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*b^6 + a*b^8)*d^7*sqrt(B^4/((a^4 +
 2*a^2*b^2 + b^4)*d^4))*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b
^8)*d^4)) + (B^2*a^6*b + 3*B^2*a^4*b^3 + 3*B^2*a^2*b^5 + B^2*b^7)*d^5*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)
/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b +
2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(((B^
4*a^6 - B^4*a^4*b^2 - B^4*a^2*b^4 + B^4*b^6)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2
)*((B^3*a^6*b - B^3*a^4*b^3 - B^3*a^2*b^5 + B^3*b^7)*d^3*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c)
+ (B^5*a^5 - 2*B^5*a^3*b^2 + B^5*a*b^4)*d*cos(d*x + c))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2
*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d
*x + c)/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (B^6*a^4 - 2*B^6*a^2*b^2 + B^6*b^4)*sin(d*x
+ c))/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) + sqrt(2)*((B^3*a^11 + 3*B^3*a^9*b^2 + 2*B^3*a^7
*b^4 - 2*B^3*a^5*b^6 - 3*B^3*a^3*b^8 - B^3*a*b^10)*d^7*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((B^4*a^4 -
 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + (B^5*a^8*b + 2*B^5*a^6*b^3
- 2*B^5*a^2*b^7 - B^5*b^9)*d^5*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*
b^6 + b^8)*d^4)))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 +
 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(B^4/((a^4 + 2*a
^2*b^2 + b^4)*d^4))^(3/4))/(B^10*a^4 - 2*B^10*a^2*b^2 + B^10*b^4)) + 4*sqrt(2)*(a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
b^6)*d^5*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^
2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4)*sqrt((B^4*a^4 -
 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4))*arctan(-((B^6*a^8 + 2*B^6*a^6
*b^2 - 2*B^6*a^2*b^6 - B^6*b^8)*d^4*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^
4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) - sqrt(2)*((a^9 + 4*a^7*b^2 + 6*a^5*b^4 + 4*a^3*
b^6 + a*b^8)*d^7*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^
6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + (B^2*a^6*b + 3*B^2*a^4*b^3 + 3*B^2*a^2*b^5 + B^2*b^7)*d^5*sqrt((B
^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((B^2*a^4 + 2*B^
2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*
B^2*a^2*b^2 + B^2*b^4))*sqrt(((B^4*a^6 - B^4*a^4*b^2 - B^4*a^2*b^4 + B^4*b^6)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 +
 b^4)*d^4))*cos(d*x + c) - sqrt(2)*((B^3*a^6*b - B^3*a^4*b^3 - B^3*a^2*b^5 + B^3*b^7)*d^3*sqrt(B^4/((a^4 + 2*a
^2*b^2 + b^4)*d^4))*cos(d*x + c) + (B^5*a^5 - 2*B^5*a^3*b^2 + B^5*a*b^4)*d*cos(d*x + c))*sqrt((B^2*a^4 + 2*B^2
*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B
^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) + (B^6*a^4 -
2*B^6*a^2*b^2 + B^6*b^4)*sin(d*x + c))/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4) - sqrt(2)*((B^3
*a^11 + 3*B^3*a^9*b^2 + 2*B^3*a^7*b^4 - 2*B^3*a^5*b^6 - 3*B^3*a^3*b^8 - B^3*a*b^10)*d^7*sqrt(B^4/((a^4 + 2*a^2
*b^2 + b^4)*d^4))*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^
4)) + (B^5*a^8*b + 2*B^5*a^6*b^3 - 2*B^5*a^2*b^7 - B^5*b^9)*d^5*sqrt((B^4*a^4 - 2*B^4*a^2*b^2 + B^4*b^4)/((a^8
 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)))*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*
b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x +
c)/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(3/4))/(B^10*a^4 - 2*B^10*a^2*b^2 + B^10*b^4)) - 8*B^5*a*
sqrt(a/b)*arctan(b*sqrt(a/b)*sqrt(sin(d*x + c)/cos(d*x + c))/a) + sqrt(2)*(2*(B^2*a^3*b + B^2*a*b^3)*d^3*sqrt(
B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (B^4*a^2 + B^4*b^2)*d)*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b
 + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*(B^4/(
(a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((B^4*a^6 - B^4*a^4*b^2 - B^4*a^2*b^4 + B^4*b^6)*d^2*sqrt(B^4/((a^4 +
2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + sqrt(2)*((B^3*a^6*b - B^3*a^4*b^3 - B^3*a^2*b^5 + B^3*b^7)*d^3*sqrt(B^4/
((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (B^5*a^5 - 2*B^5*a^3*b^2 + B^5*a*b^4)*d*cos(d*x + c))*sqrt((B^2*
a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^
2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) +
(B^6*a^4 - 2*B^6*a^2*b^2 + B^6*b^4)*sin(d*x + c))/cos(d*x + c)) - sqrt(2)*(2*(B^2*a^3*b + B^2*a*b^3)*d^3*sqrt(
B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)) + (B^4*a^2 + B^4*b^2)*d)*sqrt((B^2*a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b
 + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*(B^4/(
(a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4)*log(((B^4*a^6 - B^4*a^4*b^2 - B^4*a^2*b^4 + B^4*b^6)*d^2*sqrt(B^4/((a^4 +
2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) - sqrt(2)*((B^3*a^6*b - B^3*a^4*b^3 - B^3*a^2*b^5 + B^3*b^7)*d^3*sqrt(B^4/
((a^4 + 2*a^2*b^2 + b^4)*d^4))*cos(d*x + c) + (B^5*a^5 - 2*B^5*a^3*b^2 + B^5*a*b^4)*d*cos(d*x + c))*sqrt((B^2*
a^4 + 2*B^2*a^2*b^2 + B^2*b^4 - 2*(a^5*b + 2*a^3*b^3 + a*b^5)*d^2*sqrt(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4)))/(B^
2*a^4 - 2*B^2*a^2*b^2 + B^2*b^4))*sqrt(sin(d*x + c)/cos(d*x + c))*(B^4/((a^4 + 2*a^2*b^2 + b^4)*d^4))^(1/4) +
(B^6*a^4 - 2*B^6*a^2*b^2 + B^6*b^4)*sin(d*x + c))/cos(d*x + c)))/((B^4*a^2 + B^4*b^2)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

Timed out